はじめまして!Data Scientistの白井と市川です。
今回は、先日第35回 人工知能学会 金融情報学研究会(SIG-FIN) に行ってきましたので、そのレポートをさせて頂ければと思います。
この記事は、Insight Edge Advent Calendar 2025 7日目の記事です。
イベントの概要
人工知能学会 金融情報学研究会(SIG-FIN) は人工知能学会の第二種研究会です。
詳細は上記リンクに譲るのですが、近年より広い方々の金融市場への関心が高まっています。このような背景で、ファイナンス分野への人工知能技術の応用を促進するための研究会になります。人工知能分野の研究者や金融市場の現場の技術者が参加する、大変ユニークな研究会になっています。 余談ですが、今回も別業界の方がいらっしゃるなど、なかなか出会えない方とお話しすることができました。
最近、かなり発表量が増加傾向にあり、聴いているだけでも忙しい研究会です。例年、土曜日の1日のみの開催でしたが、発表数の増加に伴い、土日を両方使う研究会となりました。
概要は以下の通りです。
* 日時:2025年10月11日(土) および 10月12日(日)
* 開催形式:会場およびオンライン(Zoom使用)のハイブリッド開催
* 会場:慶應義塾大学日吉キャンパス 来往舎1階シンポジウムスペース
発表の概要
こちらの研究会はありがたいことに 各発表の概要pdfが公開されています 。 以下、著者の敬称略とさせて頂きます。
人工市場(4件)
(01) 人工市場を用いた取引単位の違いが裁定取引に与える影響の分析
則武 誉人 (三井住友DSアセットマネジメント), 八木 勲 (工学院大学), 水田 孝信 (スパークス・アセット・マネジメント)
取引単位が異なる2つの先物市場間で行われる裁定取引について、小さい単位で取引できるミニ先物の取引単位の大きさが、裁定取引の発生にどのような影響を与えるかを、人工市場モデルを用いて分析した研究です。
研究の背景と目的 現実の金融市場では、同じ資産を対象としながら取引単位の異なる複数の先物市場が存在します。これら市場間で価格差が生じた際に、裁定取引が行われることが指摘されていますが、取引単位の小口化が裁定取引に与える具体的な影響は十分に解明されていません。これは、現実の市場では裁定取引の観測が困難であることや、多くの外部要因が価格に影響を与えるため、取引単位の違いだけを分離して分析することが難しいことが理由です。そこで本研究では、マルチエージェント型の人工市場を構築し、ミニ先物の取引単位を変化させることで、その影響を明らかにすることを目的としています。
分析モデル
この研究では、取引単位が大きい「ラージ市場」と、小さい「ミニ市場」の2つの市場をモデル化しています。それぞれの市場には注文を出す「標準エージェント」が存在し、さらに両市場間で裁定取引を行う「裁定エージェント」を1体設定しています。
裁定エージェントは、以下の2つの要件が満たされた場合にのみ取引を実行します。
価格要件: 一方の市場の最良買い気配価格が、他方の市場の最良売り気配価格を上回る。
利益要件: 実際に売買を行った際に、売却代金が買い付け代金を上回る。
→ 成行注文で成立することのみを考えている
ラージ市場の取引単位を1に固定し、ミニ市場の取引単位()を9段階に変化させてシミュレーションを行いました。
分析結果
シミュレーションの結果、以下の点が明らかになりました。
取引単位の小口化と発注行動の変化: ミニ市場の取引単位()が小さくなると、価格要件は満たしても、ミニ市場側の最良気配の注文数量がラージ市場の取引単位に満たないため、利益要件を満たさずに裁定エージェントが発注を見送るケースが増加しました。図1は、
の例で、ラージ市場の最良買い気配(価格104)がミニ市場の最良売り気配(価格103)を上回っていますが、ラージ市場の取引単位1に合わせてミニ市場で買い付けると、次の価格帯(105)からも調達する必要があり、結果的に損失が出るため利益要件が成立しない状況を示しています。
利益要件を満たす機会の増加: 一方で、の小口化はミニ市場のビッドアスクスプレッド(売値と買値の差)を縮小させる効果がありました。これにより、利益要件を満たす機会が相対的に増加し、結果として裁定取引の発注割合は
の小口化とともに緩やかに増加し、一定の水準で収束することが示されました。具体的には、
の場合と比較して、
が小さくなるほど、価格要件と利益要件の両方を満たして発注される数量の割合が増加する傾向が見られました。
結論 取引単位の小口化が裁定取引に与える影響を明らかにしました。取引単位が小さくなると、最良気配の数量不足から裁定取引が見送られるケースが増える一方で、ビッドアスクスプレッドの縮小により利益機会が増え、全体としての裁定取引の割合はわずかに増加して安定することが示されました。この結果は、取引単位という制度設計が市場間の裁定取引の量に影響を与えることを示唆するもの。
(03) 人工市場を用いた決済期間が異なる市場間での裁定取引が各市場に与える影響の分析
著者:福家 緋莉(工学院大学)、水田 孝信(スパークス・アセット・マネジメント)、八木 勲(工学院大学)
目的/背景
T+N(遅延決済)と即時決済が併存する環境では、両市場間の裁定には株式借入が必要となるパターンがあり、貸株コストや供給制約があると裁定が働きにくい。
そこで、人工市場で外生要因を排し、借株コストが価格水準・流動性・裁定取引回数に与える影響を定量評価する。
アプローチ
- 即時決済市場とT+N市場の2市場を仮定し、各市場にエージェントでの売買を発生させて、連続ダブルオークションでシミュレーション環境を構築。
- 各市場に一般投資家エージェントをそれぞれ1000体配置し、市場横断の裁定エージェントを配置してシミュ
- 裁定パターン(6種):
- i. 即時決済市場で買い、T+N市場で売りが発生。
- ii. T+N市場で買い、即時決済市場で売り(借株コストC: 価格×係数α)。
- iii/iv T+N側に指値で買いと売りを発生。
- v/vi 即時決済側に指値で買いと売りを発生。
- 実験設定
- コスト係数 α ∈ {0, 1e-4, 1e-3, 1e-2, 0.1}
- 各条件30試行。
- 評価指標は各市場の平均的な最良気配/価格乖離/板の厚み(Depth:最良気配±100ティックの累計)/裁定発注回数(パターン別)。
- 価格水準の固定化:αが大きいほど、T+Nは割安・即時決済は割高に固定化。
- 例:平均最良売り— T+Nの SF はα上昇で低下(10,005.26→9,998.19)、即時市場の SL は上昇(10,005.26→10,012.97)。価格乖離は |SF−SL|, |BF−BL| ≈ 0.05→14.7 付近まで拡大、α≥0.01 で頭打ち。
- 板構造の非対称化:
- T+N市場:SellDepth > BuyDepth へ(売り厚↔下押し=割安化)。
- 即時市場:SellDepth < BuyDepth(買い厚↔上押し=割高化)。
- 裁定機会の蒸発:α上昇で全パターンの発注回数が減少。特にコスト付き((ii),(v),(vi))は α≥0.01 でほぼ消滅。結果、価格乖離を修正するはずのフローが細り、価格偏りが固定化。
所感/示唆
- 「速さ」の陰のコスト:即時決済を極端に推し進めると、借株依存の裁定が詰まりやすく、価格水準のバイアスが残存・固定化する。制度設計では、決済短縮と貸株市場の厚みをセットで議論すべき。
- 実務アルゴへの示唆:コストを内生化した条件式(式(3)(5)(7))での発注可否判定は必須。α感応度が高いパターン(特に(ii),(v),(vi))は在庫・貸株の確保やヘアカット前提でロジックを分岐させるのが良い。
- ポリシー面:T+1 移行や即時化の議論では、「裁定の自己修復力」を損なわないために、貸株供給や清算インフラ(在庫移動・担保受渡)の整備が鍵。
(04) 人工市場を用いたサーキットブレーカーの性能調査
著者:早瀬 竜希(工学院大学大学院)、水田 孝信(スパークス・アセット・マネジメント)、八木 勲(工学院大学)
目的/背景
サーキットブレーカー(CB)の「参照期間(過去価格を参照する窓)」Tr1 と「停止期間(取引停止の長さ)」Tr2 を切り分け、誤発注ショック下での価格下落抑制と回復スピードへの影響を人工市場で定量評価する。
アプローチ
- シミュレーションに使う環境は、ザラバ方式の連続ダブルオークションを利用。
- ノーマルエージェント n=1000 が、ファンダメンタル/テクニカル/ノイズの3戦略を重み付きで発注。
- ティックサイズ δP=1、ファンダメンタル価格 Pf=10000と設定。
- 誤発注ショック:期間 tms=30000〜tme=60000、確率 pm=15% で成行売りに置換。
- CBルール:過去 Tr1 の価格から Pr=100 以上の下落(または上昇)で発動し、Tr2 の間は新規注文・キャンセル停止。
- パラメータ走査:Tr1∈{1000,2000,5000,10000}、Tr2∈{2000,5000,10000,20000} などの組合せで20試行平均。
- 評価指標は「最大下落幅」と「Pf への回復時刻」。
実験&結果
- 下落抑制:Tr1・Tr2 を大きくするほど最大下落幅は縮小した。(例:小さめ設定の Tr1=1000, Tr2=2000 で約955、対して大きめ設定の Tr1=20000, Tr2=10000 で約203)。
- 回復スピード:一般に Tr1・Tr2 を大きくすると Pf への回復は遅延(例:Tr1=1000, Tr2=2000 で約86,410時刻後、Tr1=20000, Tr2=2000 で約117,122時刻後に復活)。
- 参照期間Tr1を拡大するだけでも、下落は抑制された。ただし Tr1 がある閾値を超えると、初回発動タイミングはほぼ同じになり、効果は頭打ち。
- Tr1>>Tr2 だと連続発動が発生する。(停止期間終了後の判定が「下落前の高い価格」を参照し続けるため、実質的な停止が長引く)。
- 組合せ最適化の兆し:Tr1=5000 の列では Tr2=2000→5000 にすると、下落抑制と停止回数の減少が両立し、Pf への回復時刻が短縮するケースが観察された。
所感/示唆
- 設計トレードオフ:Tr1/Tr2 を大きくすれば下落は抑えられるが、回復は遅くなる。
- 初動抑制と回復スピードのバランス設計が要点。
- 実務の指針:
- 短すぎる Tr2 は反動・連続発動を招きやすい一方、長すぎる Tr2 は回復遅延を招く。
- ショック終了見込みや清算工程を踏まえ、イベント窓に整合する中庸の Tr2 を探索する必要がある。
- Tr1 は「発動感度」を決めるダイヤルの役割を果たしている。そのため、市場のノイズ水準や誤発注頻度に合わせて、発動感度の頭打ち領域を超えない範囲で調整するのが重要。
- 監視・運用面では、Tr1>>Tr2 の連続発動リスクを常時モニタし、非常時は一時的にパラメータを切替えられる運用ルールが有効。
投資戦略(4件)
(05) 米国経済指標の集団的変動と産業セクター間の関係性の分析
著者:北浦 崇弘(旭化成)、稲垣 祐一郎(旭化成ホームズ)、松浦 大将(みずほリサーチ&テクノロジーズ)、越山 祐資(みずほリサーチ&テクノロジーズ)、西野 洋平(みずほリサーチ&テクノロジーズ)、家富 洋(立正大学)
目的/背景
米国の主要な産業セクターレベルの経済指標とマクロ経済指標を対象に、複素ヒルベルト主成分分析(CHPCA)と多因子分析(MFA)を組み合わせた新しい分析フレームワークを提示。目的は、経済指標群が示す集団的な変動と景気循環の関係を明らかにすること、そして産業セクター間や指標間の先行・遅行関係を定量的に把握することである。
アプローチ
- 複素ヒルベルト主成分分析(CHPCA)とMultiple Factor Analysis(MFA)を統合し、集団モードと位相を同時に推定。
- データ:FRED等から82指標(NAICS上位10セクター+マクロ指標)、期間1993/02〜2024/12。
- 有意モード判定にRRS(Rotational Random Shuffling)を採用。
- 安定性:特徴量のランダム削除、15年ウィンドウのスライディングで検証。
実験&結果
- 有意モードは3つ。寄与率は第一0.31、第二0.07、第三0.06。第一モードは景気後退期と整合し、累積強度はGDP下落率と近い関係。
- 安定性が高く、第一モードは特徴量9割削除でもcos類似度の中央値>0.9。
- 位相関係:労働時間(AWH)が雇用者数(AE)に先行/在庫売上比(ISR)→売上(SA)→在庫(TI)の順。
- セクター:小売(RT)が先行し、総合(TOT)が続く傾向。
- イベント別:ドットコムは集団運動が限定的、リーマンとCOVID-19は広範な波及。リーマンは後半で集団性が顕在化。
所感/示唆
- 第一モードは「景気の集団運動」の実用的proxy。景気後退の規模感比較や産業別波及の把握に有効。
- 実務では、雇用・在庫関連の合理的順序(AWH→AE/ISR→SA→TI)を前提に、サプライチェーンの先行把握と在庫調整のタイミング設計に活用可能。
- 分析は長期データとセクター網羅性に依拠するため、他国・最新系列への継続適用で頑健性をモニタリングしたい。
(06) 多資産ネットワーク分析が示す暗号資産の独立性とポートフォリオ分散効果
著者:水門 善之(慶應義塾大学)
目的/背景
暗号資産(ビットコイン)が伝統的資産(株・債券・コモディティ・為替)と比べてどの程度独立しているかをネットワークで可視化し、分散投資の有効性(Sharpe/Sortino)を検証する。
アプローチ
- 週次リターンの相関行列からネットワークを構築(相関0.2〜0.3で閾値化)。
- 中心性(Degree/Eigenvector/Betweenness/Closeness)で構造把握。
- 主要株価指数・コモディティ先物・主要通貨・暗号資産を対象。
- モンテカルロで9資産(主要ETF群+BTC)の無空売りポートフォリオを1万通り生成し、Sharpe/Sortino最大点を探索(2020/01〜2025/04)。
実験&結果
- ネットワークではBTCが周縁に位置し、中心性が総じて低い=独立性が高い。相関閾値0.3ではBTCは他資産から切断されるケースも。
- 銅(Copper)は異市場を含めても中心性が一貫して高い(景気指標性)。
- Sharpe ratio:Sharpeが0.086→0.160に改善、BTCウエイト約0.29。
- Sortino ratio:0.19→0.32に改善、BTCウエイト約0.13(下方リスク配慮で比率は抑制)。
所感/示唆
- BTCは「低相関な衛星資産」として、総合リスク当たり収益を押し上げ得る。ただし下方リスク耐性を重視する運用では配分抑制が妥当。
- マクロ連動性が相対的に薄い局面で寄与が期待できる一方、制度・流動性イベントへの感応度が高いため、ガバナンス・流動性管理とセットで配分設計したい。
- コモディティでは銅の中心性が高く、景況変化の早期把握に有用なモニタ対象となる。
(07) 長期相関を持つ成行注文流と価格インパクトのミクロモデル化に基づく株価の予測困難性の説明
著者:佐藤 優輝、金澤 輝代士(京都大学)
目的/背景
成行注文流は長期記憶性により予測可能だが、価格は予測困難というパラドックスを、ミクロモデルで説明する。
アプローチ
- Lillo–Mike–Farmer(LMF)型の注文分割行動モデルと、価格インパクトの平方根則 I(Q)=c√Q を結合した理論モデルを構築。
- 注文符号の自己相関 C(τ)∝τ^{-γ}(0<γ<1) を前提に、価格ダイナミクスの厳密解を解析。
実験&結果
- トレーダが分割執行を継続することで注文流は長期記憶を示し、平均的なインパクトは√Qに比例。
- その一方で、価格系列は拡散的(ランダムウォーク状)になりやすく、注文流の予測可能性と価格の予測不可能性が同居する条件を理論的に提示。
- モデルは市場横断で観測される経験則(長期記憶の符号系列、普遍的な平方根インパクト)と整合。
所感/示唆
- 注文流シグナルの活用は、インパクト・流動性制約を踏まえた実装でなければ超過収益に直結しにくい。
- 最良執行や最適発注(POV/TWAP等)の設計では、平方根インパクトと分割行動が生む自己相関を同時に考慮すべき。
- マーケットメイク/リスク管理では、長期記憶を前提にヘッジ頻度・在庫上限の調整が有効。
(08) 戦略多様性と平方根則を取り入れた一般化LMFモデル
著者:藤原 俊太(京都大学)、佐藤 優輝(京都大学)、金澤 輝代士(京都大学)
目的/背景
価格インパクトの平方根則 は普遍的とされる一方、比例係数 c の解釈・無次元化の妥当性が十分に整理されていない。
本研究は、近年の理論モデルを基に c の定義付けと統計解析手法の妥当性を検証し、取引コスト指標としての c の位置づけを明確化する。
アプローチ
- 価格インパクトの定義を再確認し、出来高 VD・ボラティリティ σD による無次元化を前提に理論整備。
- 近年提案モデルを採用し、日次出来高・日次ボラの解析計算および数値計算を併用して c と無次元化の関係を導出。
- 既往研究(各市場で δ≈0.5 の検証)との差分整理:指数 δ と係数 c の役割分担を明確化。
- 実務上の取引コスト(流動性・板厚・スプレッド等)との対応づけを検討。
実験&結果
- べき指数 δ は既報通り 0.5 付近で安定。一方で c は市場横断に一定ではなく、無次元化の前提に依存して変動。
- モデルから、c は「価格応答の強さ=実効的な取引コストに比例」する関係が定量化され、銘柄・日付を跨いだ比較可能性の条件(VD・σD によるスケーリングの前提)を提示。
- 統計手法の検証:従来の無次元化に理論的根拠を与えつつ、過度な一律適用には注意が必要という結論。
所感/示唆
- 係数 c は「市場インパクトのコスト・メーター」とみなせる。運用実装では c の時系列推定(流動性レジーム検知)を組み込むと良い。
- 監視指標としては δ よりも c のドリフト/レジーム転換が重要。板厚・ボラ・回転率と併せた多次元モニタリングが有効。
- 企業横断や市場横断の比較では、無次元化の条件充足(VD・σD の安定性)を確認してから指標化すべき。
テキストマイニング(5件)
(09) 金融テキストごとの特徴分析とポートフォリオ評価
著者:高野 海斗(野村アセットマネジメント)
目的/背景
ファンドマネージャーが投資判断に用いる決算短信やアナリストレポートなどの金融テキスト情報について、その定性的な情報を定量的な数値に変換し、資産運用戦略への活用可能性を探ることを目的とする。特に、従来のセンチメント分析が抱える課題(センチメント定義の曖昧さ、分類タスクによる限界など)を踏まえ、「将来の見通し」に焦点を当てた独自のセンチメント分析モデルを構築し、テキストの種類による特徴の違いを明らかした。
アプローチ
- 対象テキスト:バイサイド/セルサイドのアナリストレポート、ニュース、四季報(業績記事コメント・材料記事コメント)。
- センチメント推定:辞書法と BERT ベース(回帰タスク、-2〜+2 の連続値)。同日複数文は平均化し、過去90日・半減期20日で時間加重。
- 検証:
- イベントスタディ:テキスト公開日を起点に ±60 営業日で累積リターンとの相関。
- 分位ポートフォリオ:月末に5分位(Strong Neg.〜Strong Pos.)、等ウェイト/時価総額ウェイトで評価(AR/TE/IR/MaxDD/TR)。
実験&結果
- カバレッジ:四季報は銘柄数ベースほぼ常時100%、セルサイドは時価総額ベースで高水準。
- 事前の値動きとの整合:t 時点のセンチメントと t−60 営業日のリターンに正相関(事前の上昇=ポジ、下落=ネガが多い)。
- 公開後 60 営業日の相関は総じて小さい。
- アナリスト系は公開直後の短期で差が出やすい。
- ニュースは当日に反応するが持続は弱い。
- 四季報の公開後10営業日超で、ネガティブ分位が相対的に切り返す「リバーサル」傾向が見られた。
- ポートフォリオ:
- アナリスト(Strong Pos.)で良好な ARが観測された。
- ニュースは Neutral を除き概ねプラスに寄与している。
- 四季報はネガ側の AR がプラス、売買回転率は低水準となっていた。
所感/示唆
将来の見通しに着目したセンチメント分析モデルを用いることで、金融テキストの種類ごとに異なる特性を明確化し、資産運用への実用的な示唆を与えました。特に、一般的に避けられがちな四季報のネガティブコメントが、逆張りの投資戦略において有効なシグナルとなり得る可能性を示した点は、大きな発見。今後は、本研究で得られたセンチメントスコアと財務指標などを組み合わせた、より高度な投資戦略の検討が期待される。
(10) 有価証券報告書テキストを用いた配当政策データの構築と分析
著者:竹下 蒼空(成蹊大学)、高野 海斗(野村アセットマネジメント)、仁科 慧(成蹊大学)、酒井 浩之(成蹊大学)
目的/背景
企業の配当政策に関する方針が主に有価証券報告書などのテキスト情報として記述されている点に着目し、これを自然言語処理技術(BERTやLLM)を用いて体系的にデータ化することを目的とする。手作業での分析や単純なキーワード検索では困難だった、大規模かつ高品質な配当政策データの構築手法を提案し、そのデータを用いて、企業の配当政策が投資パフォーマンスにどのような影響を与えるかを分析・検証した。
アプローチ
- 文抽出:BERTopic+ModernBERT を組み合わせ、配当政策に有益な文を段階的に抽出する。
- マルチタグ付与:LLM few-shot で「増配(INC1〜9)」「減配(RED1〜6)」を文単位に多重ラベル化。(structured outputs で一貫性確保)。
- 評価:各タグで人手適合率を測定。
- 投資検証:2017/04〜2025/03、TOPIX500 対象。
- 増配系(increase)、非減配系(no reduction)、両方(progressive)のポートフォリオを月次で構築(等ウェイト/時価総額ウェイト)。
実験&結果
- タグ頻度:近年は増配志向が強まり、とくに「増配の意図(INC7)」と「累進配当採用(INC3)」が増加。
- コロナ期に一時的な減配言及(RED5/RED6)が増。
- 文分類性能:一部の時点判定タグ(当期導入・当期減配)は文単体では難しく適合率が低下するが、他は概ね良好な結果であった。
- パフォーマンス(例):
- 等ウェイト:progressive の AR≈+4.1%、increase の AR≈+3.5%。
- 時価総額ウェイト:progressive の AR≈+3.3%。回転率は年1回の開示反映が中心で比較的低位。
- 特性:DY/DOE の中央値は True/False 間でたびたび交差し、単純な高配当指標では代替困難=テキスト固有情報を含む。
所感/示唆
- 開示テキストは「将来の配当方針」を直接反映するため、数値財務だけでは拾いにくいシグナルを提供。
- 実装の肝は「抽出→多ラベル化→保守的集計(月次)」の一貫パイプライン化。タグの時点解釈は企業内時系列(例年文)を併置して精度向上を図りたい。
- 運用面では、progressive/increase/no reduction を補助シグナルとしてバリュー・クオリティ因子と組み合わせると頑健化が見込める。
(11) LLMsによる利益予測の分析とアウトオブサンプル評価
著者:白井 祐典(Insight Edge, Inc.)、市川 佳彦(Insight Edge, Inc.)、中川 慧(大阪公立大学)
目的/背景
EDINET-BENCH を用いて、日本上場企業の「次期純利益の増減方向」予測における LLM の特性を検証。どの企業・業種で精度が出やすいか、また学習後に出現した未知データに対して汎化(アウトオブサンプル:OOS)できるかを評価する。
アプローチ
- 予測方法:EDINET-BENCHを流用。
- モデル:Claude 3.7 Sonnet/カットオフ 2024-10-31を利用。
- インサンプルデータ:EDINET-BENCH の利益増減ラベル(テストは 2021–2024 年が中心)。
- OOSデータ:2025-06-01〜2025-08-31 に EDINET 提出の有報(学習後公開)を対象。
- 指標:ROC-AUC を「売上規模四分位」「東証17業種」別に算出し、インサンプル(IS)と OOS を比較。
- 事前検証:カットオフ後の自然現象を問うプロンプトで「後知識混入」兆候の有無をチェック。
実験&結果
- IS 全体 ROC-AUC:0.6075。売上下位 25%で低め(例:0.5330)など規模依存が示唆。業種間ばらつき大。
- OOS 全体 ROC-AUC:0.6327とインサンプルに対して減少せず。
- 業種差:銀行は OOS で大幅改善(+0.2899)、一方で「金融(銀行除く)」「鉄鋼・非鉄」などは低下。
所感/示唆
- LLM の利益予測は OOS でも一定の汎化を確認。ただし業種・規模で異質性が大きく、追加特徴の導入(業種特化のテキスト・数量情報)が鍵。
- 実務利用は「銘柄横断の一律モデル」より、業種別や規模別のハイブリッド設計(テキスト+数値+事前分布)でのチューニングが有効なのではないかとの示唆。
- 正真正銘の OOS を厳密化するため、評価ウィンドウとカットオフ設計(予測対象の1年前基準など)の標準化が望ましい。
(12) 適時開示テキスト埋め込みを用いたイベントスタディにおける累積異常リターンの予測
著者:伊藤 央峻(日興リサーチセンター)
目的/背景
企業の適時開示情報(TDnet)の「タイトル」から生成した高次元のテキスト埋め込み(テキストの数値ベクトル表現)が、開示直後の短期的な株価下落リスクを予測する上で有効な情報となるかを検証することを目的とする。従来のセンチメント分析など、テキスト情報を少数の指標に集約する手法では失われがちな微妙なニュアンスを、高次元の埋め込みを直接利用することで捉え、予測精度が向上するかを評価した。
アプローチ
- データ:2020/04〜2025/04 の開示約69万件(タイトル・公開項目コード)を利用。
- 特徴量:日本語特化埋め込み ruri-v3-310m(768次元)、価格系ベース特徴、業種ダミー、公開項目コード。
- モデル・検証:LightGBM/Purged K-fold(K=5)、PR-AUC 最適化。クラス不均衡はアンダーサンプリングで調整。目的変数を「CAR(0,3)が分布の下位5%に入るか(=短期的な下落リスクの発生)」とする二値分類問題と設定。
- 可視化:PCA+クラスタリングで埋め込み空間の整合性と季節性を確認。SHAP で特徴寄与を解釈。
実験&結果
- 性能:Base(価格+業種)の F1=0.235・PR-AUC=0.164 → 埋め込み追加で F1=0.265・PR-AUC=0.192 に改善。
- 単独比較:Emb 単独は Code 単独より全指標で優位。Base+Emb と Base+Emb+Code は同水準=埋め込みがコード情報を内包。
- 構造:PCA 可視化で決算/ガバナンス/PR 等の意味的分離と季節パターンを確認。SHAP では直近リターンと埋め込み成分が上位に並ぶ。
所感/示唆
- タイトル埋め込みは「短期下落リスクの早期検知」に有効。
- 公開項目コードの事前カテゴリを超える情報を保持。
- 運用では、価格モメンタム/リバーサル系の簡便特徴に埋め込みを重ねる構成が費用対効果良。
- 次の改善は、本文・添付資料の統合、分位回帰など連続予測化、埋め込み次元の安定化の検討。
(13) 大規模言語モデルを用いたアンサンブル手法による J-REIT物件情報データセットの効率的な構築方法
著者:田中 麻由梨(日本取引所グループ)、土井 惟成(日本取引所グループ)
目的/背景
J-REIT 有報の物件情報は表・テキストが混在し自動構造化が難しい。報告書に記載される物件情報は、フォーマットが統一されておらず、テキストと表が混在しているため、自動でのデータ化が困難。
複数 LLM の Few-shot 出力をアンサンブルし、高精度な JSON 変換と人的修正の最小化を目指す。
アプローチ
- 対象:J-REIT の「保有資産」等の HTML 断片(表+注記テキスト)。
- 前処理:style系の削除で構造を保持しつつトークン削減。Few-shot で JSON 仕様と注記取扱いを明示。
- モデル:ChatGPT-4o/Gemini 2.5 Pro/Claude 3.7 Sonnet、temperture=0で実施。
- アンサンブル方法:複数モデルの予測結果の3/3一致なら「採用」、2/3一致なら「多数決」、不一致なら単体精度最大モデルを採用。
- 改変検知:キー>20文字や値の過長などをルールで警告し、修正箇所を特定。
実験&結果
- Few-shot 効果:Zero→One→Two-shot で Accuracy が 32.7%→96.9%→98.37% に向上。
- LLM 単体(Two-shot):Accuracy は 98.37〜99.03%。
- 一致度別:3/3一致は 99.991%、2/3一致は 98.350%、全不一致は各モデル 86〜89%。
- 最終アンサンブル:全体 Accuracy 99.222%。不一致は約5%のみで人的確認対象を大幅に圧縮。
所感/示唆
- 「3/3または2/3一致は自動確定、0/3のみ人手確認」の運用が現実解。注記の表記揺れは正規化ルールで吸収可能。
- データセット拡張時も Few-shot 事例の管理とルール検知をセットにすれば、精度と省力化を両立できる。
- 表+注釈の混在ドキュメントにおける汎用的な構造化パターンとして他ドメインへの横展開が期待できる。
- 作成されたデータセットは、GitHubで公開される予定。
データマイニング(4件)
(14) トランザクションレンディングにおける法人のデフォルト分析
著者:小林 司(東京大学)、山本 竜也(GMOあおぞらネット銀行)、成末 義哲(東京大学)、森川 博之(東京大学)
目的/背景
従来の財務諸表に基づく融資とは異なり、口座の取引履歴を基に審査を行う「トランザクションレンディング」における法人のデフォルト(債務不履行)要因を分析した。インターネット専業銀行の実際の融資データを用いて、法人の属性や取引情報がデフォルト率にどう影響するかを検証している。
アプローチ
- 対象データ:インターネット専業銀行の契約18,199件(契約後1年のデフォルトを評価)。
- 属性軸:設立年数(3年未満/以上)、代表者の事業経験(初回/法人設立経験/個人事業主経験)、業種。
- 取引軸:入金先の集中度(顧客依存の強さ)をハーフィンダール・ハーシュマン指数(HHI)で定義。
- 比較:各セグメントのデフォルト率(LOW/MEDIUM/HIGH)と統計的有意性を検証。
実験&結果
- 設立3年未満の法人は、3年以上よりデフォルト率が有意に低い。
- 代表者が個人事業主経験・法人設立経験を持つ場合は相対的に低水準。
- 業種:デザイン/教育など“ソフト面”依存の業種で低水準、食品・飲料や小売・製造で高水準の傾向。
- 顧客集中:HHIが高いほどデフォルト率上昇。年数に依存せず一貫。
所感/示唆
- 「若い×経験あり」プロファイルを過度に抑制せず、顧客集中の分散度を厳格モニタする設計が有効。
- スコアリングは属性(年数・経験)×取引集中(HHI)の二軸で早期に差別化。与信額より行動指標に着目。
- 業種の“ソフト依存度”を補助変数化し、審査・モニタリングの優先順位に反映したい。
(15) Fiedlerベクトルと情報エントロピーを用いた株式ネットワークの構造変化検知
著者:星野 知也(株式会社三井住友銀行)
目的/背景
相関に基づく株式ネットワークの“構造変化点”を頑健に捉え、レジーム転換の早期兆候を検出。Minimum Spanning Tree(最小全域木)の、ショック時の不自然連結の限界を補う枠組みを提示。
アプローチ
- 提案:階層的Fiedler疎性化(Hierarchical Fiedler Sparsification;HFS)で疎グラフ構築(Fiedlerベクトル×二分割×交差エッジ選択)。
- 指標:Fiedlerエントロピー[均質性]とワッサースタイン距離[構造差異]で変化点検知。
- データ:米国S&P500の49業種(日次、直近12週ロール、週次更新)。MST・Absorption Ratioと比較。
実験&結果
- 構造表現:コロナ期(2020/3)はHFSで業種クラスタが明瞭、MSTは直感に反する隣接が散見。
- 変化点:2020/2上旬(下落前)、3月後半(底形成期)、11月(選挙・ワクチン報)で検知が整合。
- 収益との関係:エントロピー↑の週は平均超のリターン、距離↑の週は低下傾向。上昇/下落トレンド別でも意味ある差分。
所感/示唆
- リスク上昇の前兆は「エントロピー低下+距離上昇」の組み合わせで早期拾い。監視ダッシュボードに組込みやすい。
- 相関ノイズに強く、業種構造の解釈性が高い。日本市場や個別銘柄粒度にも横展開が期待できる。
- 運用ではMST等との併用で“ショック依存の誤配線”を回避し、レジーム検知の信頼度を底上げ可能。
(16) 暗黙の政府保証を加味した国内地方債スプレッドの評価
著者:石原 龍太(みずほ第一フィナンシャルテクノロジー)
目的/背景
一般的に、日本の地方債は地方財政制度を通じた政府の支援により、信用リスクは低いと認識される。しかし、この政府保証は法的な根拠を持つものではなく、その信頼度(市場の信認度)を観測することは困難。過去には、国の補助金削減などを背景に地方財政への懸念が高まり、スプレッドが拡大した事例もあった。本論文では、国内地方債の発行スプレッドに内在する「暗黙の政府保証」の強さを定量推計し、説明力の向上と市場整合性を検証した。投資家・引受側・政策当局の判断材料を提供。
アプローチ
- モデル:スプレッド=α+β₁×{実質公債費比率×(1−政府保証信頼度)}+β₂×{国債マイナス金利幅}。
- 推計:遺伝的アルゴリズムで「政府保証信頼度(月次)」を同月の都債との差分二乗誤差と平滑化で最適化。
- データ:2006/4–2024/3の市場公募地方債(10年)、都道府県の実質公債費比率、国債利回り。
実験&結果
- 信頼度の時系列:2006–2008年に低下局面(制度改革・スプレッド拡大と整合)、以降は高水準で安定。
- 当てはまり:政府保証信頼度を入れると決定係数R²が0.169→0.308に改善。
- 係数解釈:保証が消滅した極端仮定では、実質公債費比率20%の団体でスプレッドがおおよそ+20bp拡大。
所感/示唆
- 地方債の“準安全資産”性は制度と市場信認の産物。信認低下シナリオのストレス計測に有用。
- 実務では、保証信頼度のモニタ(時系列)×団体別ファンダ(実質公債費比率)で相対価値評価を高度化。
- 将来の制度変化や人口動態ショックに対し、信頼度推計を早期警戒指標として活用できる。
(17) 本邦中古スマートフォン市場における価格形成に対する機種ブランドと為替レートの影響
著者:市川 佳彦(Insight Edge, Inc.)、平野 友貴(住友商事)、居村 裕平(住友商事)、中條 悠介(住友商事)、桑本 奈緒(住友商事)、堤 鴻志郎(住友商事)、中川 慧(大阪公立大学)
目的/背景
中古スマホ市場の価格形成メカニズムを、実勢に近い「買取価格」を用いて定量検証。ブランド差や米ドル/円の為替変動が残価率にどう効くかを明らかにする。
アプローチ
2018–2024年の機種・容量別の月次買取価格(RMJ)から残価率(RVr)を定義し、①経過月数とRVrの関係(線形回帰/可視化)、②為替変動のラグ効果(1–6か月ウィンドウ×1–4か月ラグの相関)、③iPhoneを対象にXGBoost+SHAPで特徴量重要度を評価。
実験&結果
- 価格を最も規定するのは「発売からの経過月数」。Appleは他社に比べ減価が緩やか。
- 為替は短期の同時点では効きにくいが、iPhoneでは「過去1–2か月の為替変化が約3か月後のRVr変化と弱い正相関」。
- XGBoostの予測精度は高水準(R²≈0.898、MSE≈0.0020)。SHAPでは「経過月数」が圧倒的に重要。容量は非線形で、64GBはマイナス寄与、128/256GBは中立、512GB/1TBは相対的に不利。
所感/示唆
経過月数とブランド差(特にApple優位)を前提に、在庫評価や買取価格のガイド可。為替は即時反映ではなく遅行気味のため、為替ショック観測後の数か月先を見た在庫ポジション調整が有効。容量ミックスは「中容量を主軸」に設計するのが合理的。
機械学習(5件)
(18) 事前エクスポージャー情報を活用した部分空間正則化付き主成分分析
著者:中川 慧(大阪公立大学・MONO Investment)、加藤 真大(みずほ第一フィナンシャルテクノロジー・大阪公立大学)、今村 光良(筑波大学)
目的/背景
資産運用で広く用いられる主成分分析(PCA)の安定性を向上させる新しい手法「部分空間正則化付き主成分分析」を提案。
株式や債券など複数の資産(マルチアセット)の価格変動を説明するために、マクロ経済指標と関連付けられるリスクファクター(マクロファクター)が利用される。このファクターを抽出する代表的な統計手法が主成分分析(PCA)となる。しかし、過去の一定期間のデータを用いて分析を逐次的に繰り返す「ローリングPCA」では、推定される主成分(ファクターへの各資産の感応度を示すエクスポージャー)が時間とともに大きく変動してしまう問題がある。この不安定性は、ファクターの経済的な解釈を一貫して行うことを困難にし、分析の信頼性を損う。
この課題を解決するため、本研究では「部分空間正則化付き主成分分析」を提案。この手法は、標準的なPCAの最適化問題に、利用者が経済的知見に基づいて事前に設定した「望ましいエクスポージャー構造(事前エクスポージャー情報)」を正則化項として加えるものである。
アプローチ
ユーザが与える「事前エクスポージャー(US)」の張る部分空間への射影を正則化項として導入し、標本共分散との凸結合S_LS=λ(USUSᵀ)+(1−λ)Sに対するPCAとして解く。実証では6資産(月次、1997–2025)でk=3因子、Procrustes距離で安定性を評価し、リスク分解で説明力を確認。
実験&結果
- λを上げるほど主成分空間の時系列安定性が大幅改善(平均Procrustes距離:λ=0で2.46 → λ=0.9で0.12)。
- 説明力(Adj.R²やリスク分解の寄与)はおおむね維持され、安定性と説明力の両立を確認。
- 事前因子は「成長/リスクオン・実質金利・インフレ」に対応する構造で解釈可能。
所感/示唆
- 「解釈可能な因子構造を維持したまま」戦術配分やリスク管理に使える因子を安定抽出できる。
- 運用現場ではλをハイパラとして運用目的に合わせて調整し、安定性重視のモニタリングやアロケーション説明に有効。
(19) 財務諸表監査のための逐次検定:試査手続の統計学的な定式化と理論保証
著者:加藤 真大(大阪公立大学・みずほ第一フィナンシャルテクノロジー)、中川 慧(大阪公立大学)
目的/背景
財務諸表監査における「試査」と呼ばれるサンプリング調査の慣行に、統計学的な理論保証を与えるための新しい手法を提案している。現代の財務諸表監査では、膨大な量の勘定科目を全て調査する「精査」は非現実的であるため、一部を抜き出して調査する「試査」が行われている。実務では、一度のサンプリングで判断できない場合、判断がつくまで追加でサンプリングを続ける慣行があるが、これは経験則に頼っており、誤った判断を下す確率(誤判断確率)が数学的に保証されていなかった。
本研究では、統計的保証のある逐次検定として整備し、誤判断確率(第一種・第二種)を管理可能にする。
アプローチ
有限母集団からの非復元抽出(超幾何分布)を前提に、停止・決定ルールを閾値列(上限κᵣ(t)、下限κᵣ_(t))で定義。最悪母逸脱率(r±θ)でモンテカルロにより閾値を逐次的に設計し、所望のα・βを満たすよう誤判断確率を制御。拡張として片側検定、検出力制約つき片側、二段階検定、打ち切り付き逐次検定を提示。
実験&結果
- 無関心領域外で誤判断確率が目標(例:α=β=0.05)以内に制御されること、想定レンジで期待停止時刻が算定可能であることを数値実験で確認。
- 現場フローに合わせた設計(初回サンプル後の追加試査や打ち切り)にも対応可能。
所感/示唆
「どこで止めるか/どちらと判定するか」を事前に設計できるため、監査品質の説明責任を強化。許容逸脱率や無関心領域、α・βを文書化しておくと、監査計画・レビュー時の合意形成がスムーズになる。
(20) 学習期間が異なる株価予測機械学習モデルのアンサンブル学習による投資戦略の構築
著者:西村 征馬(三井住友トラスト・アセットマネジメント)
目的/背景
機械学習による株式リターン予測では「学習期間(履歴の長さ)」が結果に大きく影響するが、最適期間は一意に決めにくい。
本研究は、学習期間だけが異なる複数モデルをアンサンブルし、期間選択を機械化して予測力と運用成績を高めることを目指す。
アプローチ
- ベースモデル:LightGBM(回帰、損失はMSE)。学習期間を36〜120か月まで12か月刻みで8本作成。
- 検証設計:将来/同時点情報漏洩を避ける時系列交差検証でvalidationを統一化。
- アンサンブル:
- スタッキング(線形回帰/Elastic Net)
- ブレンディング(逐次二次計画法[SLSQP]で非負・和=1の重み最適化でのブレンド)
- バックテスト:TOPIX採用のうち時価総額上位60%、2015/07–2025/06。予測に基づく分位(5分位・10分位)およびロングショートを評価。
実験&結果
- 損失:Validation最小化で得た重みはTest lossも概ね改善。OLSスタッキングは過学習傾向、Elastic Netとブレンディングが安定。
- 収益性:アンサンブル由来のポートフォリオが単体モデルより一貫して高い超過リターン(5分位・10分位、ロングのみ/ロングショートの別を問わず)。
- ロバスト性:学習期間差に依存せず、重み学習により未知データでの標準偏差(test_std)も抑制。
所感/示唆
- 学習窓の最適化は“選ぶ”より“混ぜる”が実務的。Elastic Net系や非負和=1ブレンドは過学習を抑えつつ汎化に寄与。
- 年次リバランス等の軽量更新でも効果が出る設計で、既存のファクターモデルに期間多様性アンサンブルを上乗せする価値が高い。
(21) マルチモーダルデータを用いた機械学習モデルによる企業の業績修正予測
著者:田代 雄介(MTEC)、鈴木 彰人(MTEC)、山口 流星(MTEC)、宮澤 朋也(データアナリティクスラボ)、亀田 希夕(データアナリティクスラボ)
目的/背景
企業の財務報告書(決算短信)のテキストデータと、株価の時系列データを組み合わせた「マルチモーダルな機械学習モデル」を構築し、将来の業績修正を予測するタスクに取り組んだもの。
長文テキストと時系列情報を統合した機械学習フレームワークを構築し、企業の業績修正(上方修正、下方修正、修正なし)を予測するモデルの有効性を検証することを目的とする。
アプローチ
- テキスト:ModernBERT(長文対応、最大4096トークンで学習)。
- 時系列:Transformerエンコーダ(過去250営業日の対TOPIX超過リターン)。
- 結合:単純結合/Gated Fusion/Cross Attention を比較。
- データ:東証プライムの2018年以降。クラス不均衡は1:1:1のアンダーサンプリング。Train=2018–2022、Test=2023–。指標:AUROC, F1。
実験&結果
- ベースライン:テキスト単独 AUROC=0.656, F1=0.458;時系列単独 AUROC=0.555, F1=0.345。
- マルチモーダル:Cross Attentionが最良(AUROC=0.671, F1=0.493)、Gated Fusion/単純結合もテキスト単独を僅かに上回る。
- 長文効果:4096 vs 512トークンで大差なし(重要情報は先頭に集中する可能性)。
- 実務適合性:予測確率に基づく10分位分析で、最上位分位の上方修正率53.2%とシグナル妥当性を確認。
所感/示唆
- テキストが主、時系列は補助。ただし結合部の設計(Cross Attention等)で安定改善。
- 運用では、確率スコアの分位連動でアナウンス前のポジショニングや監視銘柄選定に転用可。モデルの軽量化・更新性と併せて実装のしやすさが高い。
(22) 生成AIを用いた決算説明サプライズの定量化手法の提案
著者:辻 晶弘(DaNeel Insight株式会社)
目的/背景
従来のサプライズ指標SUE(EPS実績−予想)だけでは説明会の質やIR文脈が捉えにくい。生成AIによるペア比較+GlickoレーティングでEarnings Callの相対評価(rating)を構築し、価格反応(day1)とその後のドリフト(day2–5)への説明力を検証する。
アプローチ
- ユニバース:日本上場企業(SCRIPT Asia等のコール要約/トランスクリプトを整備)。
- 指標:SUE_cs(コンセンサスEPS変化)、SUE_cb(会社ガイダンス変化)を定義。
- 生成AI:LLMでコール要旨をペア比較し、Glicko法で一体化スコア(rating)へ。
- 目的変数:TOPIX超過のday1(reaction)とday2–5(drift)。単回帰・重回帰でp値/R²・標準化係数を評価。
実験&結果
- day1反応:SUE_csが最も強い(R²≈0.093、p<0.001)。SUE_cb, ratingも有意だが相対的に小。
- day2–5ドリフト:説明力はratingが優位で、日を追うごとにR²は逓減しつつも正の寄与を維持。数値サプライズのみでは説明しきれない質的情報の寄与を示唆。
- 相関・面回帰のクロスチェックでも、即時は数値、持続は質という役割分担が概ね一貫。
所感/示唆
- 決算説明会の質(言語情報)は短期の方向づけより継続リターンに効く。イベント後のフォローではratingの活用が有効。
- 実務実装は、SUE(数値)×rating(質)の二軸でイベント選別とエントリー/エグジットを設計。トランスクリプト整備と時点合わせが精度のカギ。
機械学習/テキストマイニング(4件)
(23) 指値配分を連続確率分布化した深層学習によるマーケットメイキング
著者:久保 健治(東京大学・株式会社松尾研究所)、中川 慧(大阪公立大学・株式会社松尾研究所)
目的/背景
深層学習(DL)を用いた効率的なマーケットメイキング手法を提案するもの。特に、価格変動が大きい市場において複数の指値注文を管理する際の、行動空間の爆発的な増大という課題に対処している。
指値の数量配分を離散的なものではなく、連続確率分布を用いて緩和する点が研究の中心。具体的には、複数の正規分布を混合した混合正規分布を使い、指値数量の分布を表現した。これにより、ニューラルネットワークが出力すべきパラメータの数を大幅に削減し、高次元の行動空間の問題を回避して効率的な学習を可能にする。
アプローチ
指値数量の「配分」を連続確率分布(混合正規の切断・再正規化)で緩和し、行動空間を圧縮。StockMixerに時刻特徴量とポジションを拡張して方策ネットを構成し、CARA効用で学習。約定は高値/安値と分布の積分で近似し、離散化との誤差を検証。
データ/実験設定
米国上場の主要ETF5銘柄(GLD, IWM, QQQ, SPY, TLT)・5分足(2021–2024)。Nm=3の混合正規、ラグL=78、T=24、γ=1。学習は前半期間の7-fold、テストは後半期間でバックテスト。
結果
テストで年率リターン約5%、ASR≈1.62、MDD≈2.98%、CR≈1.52。連続緩和は収益をやや過大評価するが、離散実装との差は限定的。ポジションは各銘柄・合計ともに偏り小さくリスク管理が機能。
所感/示唆
複数価格・複数銘柄のマーケットメイクで「数量配分を連続化」する設計は、RL実装の安定化と可搬性(離散実装への落とし込み)を両立する実務的トレードオフ。
今後は緩和誤差の制約化とネットワーク設計の最適化(例:執行コスト・流動性制約の内生化)が有効。
(24) 3値ポートフォリオ最適化に対するQAOAミキサーの性能比較
著者:山村 真太郎(東京理科大学)、渡邉 聡(KDDI総合研究所)、國見 昌哉(東京理科大学)、斉藤 和広(KDDI総合研究所)、二国 徹郎(東京理科大学)
目的/背景 量子コンピューティングの一分野であるNoisy Intermediate-Scale Quantum(NISQ)デバイス向けの量子アルゴリズム、Quantum Approximate Optimization Algorithm(QAOA)を金融工学の重要課題であるポートフォリオ最適化問題に応用した研究。 現実の運用では「保有・非保有・空売り」の3状態が自然。3値(−1,0,1)のポートフォリオ最適化をQAOAで解き、ミキサー選択が性能に与える影響を比較する。
アプローチ
2量子ビット/資産で3値を符号化し、Standard/XY系(Ring, Parity Ring, Full, QAMPA)を比較。
p層の初期値設計・古典最適化(SLSQP/Nelder-Mead)を工夫し、ノイズ(depolarizing)環境でも評価。
データ/実験設定
DAX30からn=5/8のサブセット(主にn=5, B=2を提示)。
Statevector/Qasm/DensityMatrix Simulator、ショット数3,000/8,192、p=1,3,5,7。評価は平均近似率rと最適解確率P。
結果
無ノイズではXY Full/QAMPAが高水準(r>99%級、Pも高い)。
一方、ノイズ下ではパラメータの頑健性と探索容易性の差が顕在化し、層数pの増加は必ずしも有利に働かない。
初期値・古典最適化設定が品質に与える影響も大きい。
所感/示唆
3値最適化では、ノイズ環境を前提としたミキサー選定+初期化戦略が鍵。
小規模問題でも層数の過剰増加は避け、頑健性重視のハイパラ設計で実運用への橋渡しが現実的。
(26) LLM-PEAD.txt:日本株式市場におけるLLMを用いたサプライズ抽出と決算後ドリフトの実証分析
著者:種村 賢飛 (東京大学/松尾研究所), 久保 健治 (東京大学/松尾研究所), 中川 慧 (大阪公立大学/松尾研究所)
目的/背景
近年の日本株式市場を対象に、企業の決算発表後に株価がサプライズの方向に継続して動く「決算後ドリフト(Post Earnings Announcement Drift;PEAD)」という現象を再検証したもの。特に、従来からの数値情報に基づくサプライズと、大規模言語モデル(LLM)を用いてテキスト情報から抽出したセンチメント(市場心理)を組み合わせることで、この現象がどのように変化するかを分析。
アプローチ
- 決算資料から、数値に基づくサプライズ指数 SUE と、LLM によるテキストベースのサプライズ指数 LES を構築。
- PEAD の検出:決算発表後の超過リターンがサプライズ方向に継続するかを検定。
- LES は辞書極性ではなく LLM により文脈を評価し、“数値では拾えない含意”を抽出。
データ/実験設定
- 日本上場企業の決算発表(TDnet/決算短信等)を対象。
- 発表当日以降の短期〜数日スパンの超過リターンでドリフトを評価。
- SUE 単独、LES 単独、SUE×LES の条件別に比較。
結果
- SUE 単独・LES 単独では一貫したPEADを確認できず。
- SUE×LES の組合せ条件下(例:SUE 高×LES 低など)では、サプライズ方向へのドリフトを観測。
- LES は辞書極性とは独立に、発表後リターン変動の一部を追加説明。
所感/示唆
- 「数値×言語」の相互条件でPEADが表れやすい。
- 決算イベントのシグナル設計は、SUEとLLMテキスト要約(LES)の同時利用が有効。
- 実装面では、LESを単独スコアとして使うより、SUEで事前に候補を絞りLESで精緻化する二段構えがコスト対効果良。
- モデル監査の観点では、LESが辞書法以上の“文脈”を捉えていることを前提に、説明変数の直交性チェックとリーク検証を継続すべき。
(27) 有価証券報告書のサステナビリティ記述に関する分類および体系化
著者:梅原 武志 (総合研究大学院大学/日経リサーチ), 武田 英明 (国立情報学研究所/総合研究大学院大学)
目的/背景
有価証券報告書に記載された企業のサステナビリティに関する具体的な取り組みを抽出し、分類・可視化することを目的とする。
さらに、抽出した重要語とSDGsオントロジー(SDGsの目標や関連用語を体系化した知識ベース)を関連付けることで、企業の活動がどのSDGs目標に貢献するのかを体系化することを試みている。
アプローチ
- テキストマイニングでサステナビリティ施策の記述を抽出し、カテゴリ分類とキーターム抽出を実施。
- 企業・業種別に分布を集計し、可視化(マップ化)で取り組みの差異を分析。
- 義務化以後の開示様式に合わせ、比較可能性を高めるための構造化ルールを設計。
データ/実験設定
- 日本企業の有価証券報告書(「サステナビリティ関連財務情報」欄)。
- 産業分類・企業属性(規模など)で層別し、記述の濃淡や用語の出現頻度・共起を分析。
結果
- 企業横断での共通語彙と業種固有語彙が抽出され、E(環境)・S(社会)・G(ガバナンス)の重点の置き方に業種差。
- 義務化以降の開示では、定型表現が増える一方で施策の具体性にはばらつきが残存。
- 体系化(分類+用語辞書)により、多社比較の自動集計・可視化が可能に。
所感/示唆:
- レポーティングは「定型+自由記述」の二層で運用されるため、用語辞書と分類スキーマのガバナンスが重要。
- 投資家向けには、業種ごとの“力点”の違いを踏まえたベンチマーク・指標化が有効。
- 企業実務では、次年度以降の継続改善に向け、社内KPIと開示テキストの紐づけ(用語統一・具体性の担保)を進めたい。
雑感
Sig-finではテキスト分析が完全に定着しました。会場で様々な方と話をしましたが、今後もこの流れが継続するものと考えています。 暗号資産や量子コンピューターのテーマまで幅広く扱われているのが印象的で、実際に来場された方も金融業界に限らず多くの方がいらっしゃっていました。